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Abstract
A criterion is formulated for existence and another for the non-existence
of complex eigenvalues for a class of non-self-adjoint operators in Hilbert
space invariant under a particular discrete symmetry. Applications to the
PT -symmetric Schrödinger operators are discussed.

PACS number: 11.30.−j

1. Introduction and statement of the results

The Schrödinger operators invariant under the combined application of a reflection symmetry
operator P and of the (antilinear) complex conjugation operation T are called PT -symmetric.
A standard class of such operators has the form H = H0 + iW where

1. H0 is a self-adjoint realization of −� + V on some Hilbert space L2(�);� ⊂ R
n, n � 1;

V and W are real multiplication operators.
2. V is P-even, PV = V , and W is P -odd: PW = −W . P is the parity operation

(Pψ)(x) = ψ((−1)j1x1, . . . , (−1)jnxn), ψ ∈ L2

where ji = 0, 1; ji = 1 for at least one 1 � i � n.

If T is the involution defined by complex conjugation: (T ψ)(x) = ψ(x), one immediately
checks that (PT )H = H(PT ).

PT -symmetric quantum mechanics (see, e.g., [1–8]) requires the reality of the spectrum
of PT -symmetric operators, recently proved, for instance, for the one-dimensional odd
anharmonic oscillators [12, 13]. Imposing boundary conditions along complex directions,
however, examples of PT -symmetric operators with complex eigenvalues have been
constructed [14]. It is therefore an important issue in this context to determine whether
or not the spectrum of PT -symmetric Schrödinger operators with standard L2 boundary
conditions at infinity is real. We deal with this problem only in perturbation theory, but we
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will obtain criteria both for existence of complex eigenvalues (theorem 1.1) and for the reality
of the spectrum (theorem 1.2), in even greater generality than the PT symmetry.

Let H be a Hilbert space with scalar product denoted as (x|y), linear in the first factor and
antilinear in the second one, and H0 : H → H be a closed operator with domain D ⊂ H. Let
H1 be an operator in H with D(H1) ⊃ D. This entails that H1 is bounded relative to H0, i.e.,
there exist b > 0, a > 0 such that ‖H1ψ‖ � b‖H0ψ‖ + a‖ψ‖,∀ψ ∈ D. We can therefore
define on D the operator family Hε := H0 + εH1,∀ε ∈ C.

We assume the following symmetry properties: there exists a unitary involution
J : H → H mapping D to D, such that

JH0 = H ∗
0 J, JH1 = H ∗

1 J . (1.1)

In other words, J intertwines H0 and H1 with the corresponding adjoint operators. Note that

1. the properties J 2 = 1 (involution) and J ∗ = J−1 (unitarity) entail J ∗ = J , i.e., self-
adjointness of J ;

2. the properties (1.1) entail, if ε ∈ R, JHε = H ∗
ε J ; therefore the spectrum σ(Hε) of Hε is

symmetric with respect to the real axis if ε ∈ R;
3. an example of J is the parity operator P.

Let H0 admit a real isolated eigenvalue λ0 of multiplicity 2 (both algebraic and geometric,
i.e., we assume the absence of Jordan blocks). Let e1, e2 be linearly independent eigenvectors,
and Eλ0 the eigenspace spanned by e1, e2. Clearly JEλ0 := E∗

λ0
is the eigenspace of H ∗

0

corresponding to the eigenvalue λ0, and hence the sesquilinear form (u∗|v), u∗ ∈ E∗
λ0

, v ∈ Eλ0

is non-degenerate. Therefore, we can choose e1, e2 in Eλ0 in such a way that, writing
u = u1e1 + u2e2, the quadratic form Q(u, u) = (Ju|u) on Eλ0 assumes the canonical form

Q(u, u) = τ1u
2
1 + τ2u

2
2, τ1 = ±1, τ2 = ±1. (1.2)

Under these circumstances we want to prove the following:

Theorem 1.1. With the above assumptions and notation, consider the operator family Hε for
ε ∈ R. Denote:

H11 = (e1|H1e1), H22 = (e2|H1e2), H12 = (e1|H1e2). (1.3)

Then (e1|H1e1) ∈ R, (e2|H1e2) ∈ R and there exists ε∗ > 0 such that, for 0 < |ε| < ε∗:

(i) If τ1 · τ2 = −1, and

H12 �= 0, 4|H12|2 > (H11 − H22)
2 (1.4)

then Hε has a pair of non-real, complex conjugate eigenvalues near λ0.
(ii) If τ1 · τ2 = 1 then Hε has a pair of real eigenvalues near λ0.

Remarks

1. The above theorem applies to the PT -symmetric operator family Hε = H0 + iεW , where
H0 and iW = H1 are as above. Here J = P , and hence PH0 = H0P,P (iεW) =
−(iεW)P = (iεW)∗P so that JHε = H ∗

ε J . In that case, moreover, the second condition
of (1.4) is satisfied as soon as H12 �= 0 because the P -symmetry of H0 and the P -
antisymmetry of W entail H11 = H22 = 0.

2. The physical relevance of theorem 1.1 is best illustrated by an elementary example. Let
H = L2(R2) and H0 : H → H be the (self-adjoint) two-dimensional harmonic oscillator
with frequencies ω1, ω2:

H0u = − 1
2�u + 1

2

(
ω2

1x
2
1 + ω2

2x
2
2

)
u.
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We have σ(H0) = {
Ek1,k2

}
:= {

k1ω1 + k2ω2 + ω1
2 + ω2

2

}
, ki = 0, 1, 2 . . . , i = 1, 2. Let

again Hε = H0 + iεW , ε ∈ R, with

W(x) = x2
1x2

1 + x2
1 + x2

2

.

Then W is bounded relative to H0, and PW = −W if Pu(x1, x2) = u(x1,−x2) or
Pu(x1, x2) = u(−x1,−x2). Set ω1 = 1, ω2 = 2, k1 = 2, k2 = 0; i.e., we consider the
eigenvalue E2,0. Then for |ε| > 0 small enough Hε has a pair of complex conjugate
eigenvalues near E2,0.

To see this, remark that E2,0 = E2(ω1) + E0(ω2) = E0(ω1) + E1(ω2), where
Ei(ωi) = (k + 1/2)ωi are the eigenvalues of the one-dimensional harmonic oscillators
with frequencies ωi, i = 1, 2. E2,0 has multiplicity 2. A basis of eigenfunctions is
given by

ψ1(x1, x2) = e2(x1)f0(x2); ψ1(x1, x2) = e0(x1)f1(x2).

Here e0, e2 are the eigenfunctions corresponding to E0(1) and E2(1), respectively; f0, f1

are the eigenfunctions corresponding to E0(2) and E1(2), respectively; note that e0, e2

and f0 are even while f1 is odd. To first-order perturbation theory, the two eigenvalues
	j(ε), j = 1, 2, of Hε near E2,0 are given by

	j(ε) = E2,0 + iελj

where λj , j = 1, 2, are the eigenvalues of the 2 × 2 matrix

(Wl,k) =
(

(ψ1|Wψ1) (ψ1|Wψ2)

(ψ2|Wψ1) (ψ2|Wψ2)

)
.

Now ψ1 is even, ψ2 is odd. Therefore, τ1 · τ2 = −1. Moreover, since W is odd:
(ψ1|Wψ1) = (ψ2|Wψ2) = 0, (ψ2|Wψ1) = (ψ1,Wψ2) := w > 0. Therefore λj = ±w

and 	j(ε) = E2,0 ± iεw. Hence, the conditions of theorem 1.1(i) are satisfied and for ε

small enough Hε has a pair complex conjugate eigenvalues near E2,0.
3. The result of theorem 1.1 remains true under the following more general conditions: under

the above assumptions on H0 and H1 let H0 admit two real, simple eigenvalues E1, E2.
Let d := E2 −E1 be their relative distance; D := dist[(σ (H0)\{E2, E1}), {E2, E1}] their
distance from the rest of the spectrum; ψ1, ψ2 the corresponding eigenvectors, all other
notation being the same. Then if d/D is small enough the same conclusion of theorem 1.1
holds provided |εH12| > d

2 . We will sketch the proof of this statement after the proof of
theorem 1.1.

4. Example. Odd perturbations of quantum mechanical double wells: existence of complex
eigenvalues.

Let H = L2(R), H0(h̄) = −h̄2 d2

dx2 + x2(1 + x)2,D(H0) = H 2(R) ∩ L2
4(R),W(x) ∈

L∞
loc(R), |W(x)| � Ax4, |x| → ∞,W(−x) = −W(x). Here, L2

4(R) = {u ∈
L2(R)|x4u ∈ L2(R)}. In this case, it is known that W is bounded relative to H0; moreover
d = O(e−1/ch̄),D = O(h̄), w = O(1) if E1, E2 are the two lowest eigenvalues. Hence,
the conditions of theorem 1 are fulfilled in the semiclassical regime provided (e1|We2) �= 0
and thus there exist A > 0, B > 0, C > 0 such that Hε(h̄) := H0 + iεW will have at least
a pair of complex conjugate eigenvalues for A e−B/h̄ < εw � Ch̄. Equivalently, we may
consider the double well family H0(g) = − d2

dx2 +x2(1+gx)2 defined on the same domain.

Here d = O(e−1/g2
),D = O(1), w = O(1). The same argument holds for the general

case H0 = −h̄2� + V (x), where V : R
n → R is smooth, has two equal quadratic minima

and diverges positively as |x| → ∞; W(x) ∈ L∞
loc(R

n), |W(x)| � AV (x) as |x| → ∞
because the estimate for d is the same as above [15].
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The second result concerns the opposite situation, a criterion ensuring the reality of the
spectrum. In this case the natural assumption is the simplicity of the spectrum of H0 in
addition to its reality. Therefore, for the sake of simplicity we assume H0 self-adjoint.

Theorem 1.2. Let the self-adjoint operator H0 be bounded below (without loss of generality,
positive), and let H1 be continuous. Let H0 have discrete spectrum, σ(H0) = {0 � λ0 � λ1 �
· · · � λl � · · ·}, with the property

δ := inf
j�0

[λj+1 − λj ]/2 > 0. (1.5)

Then σ(H(ε)) ∈ R if ε ∈ R, |ε| < δ
‖H1‖ .

Example. Here, again H = L2(R); H0 = − d2

dx2 + V (x), D(H0) = H 2(R) ∩ D(V ).
V (x) = kx2m, k > 0,m � 1; W(x) ∈ L∞(R),W(−x) = −W(x). We have: σ(H0) =
{λn}, n = 0, 1, . . .;

λn ∼ k
1

2m n
2m
m+1 , n → ∞

Each eigenvalue λn is simple. Clearly δ � 1. Denote now Hε := H0 + iεW the operator
family in L2(R) defined by Hε = H0 + εH1,H1 = iW,D(Hε) = D(H0). Then Hε has real
discrete spectrum for |ε| < ‖W‖∞.

2. Proof of the results

Proof of theorem 1.1. The proof consists in two steps. In the first one we show that the
2 × 2 matrix generated by restricting the perturbation H 1 to Eλ0 is anti-Hermitian in case (i)
of theorem 1.1 or Hermitian in case (ii). In the second step we show by the method of the
Grushin reduction (see, e.g., [15]) that for ε suitably small the control of the above 2 × 2
matrix is enough to establish the result. A shorter proof of assertion (i) could be obtained
by standard first-order degenerate perturbation theory; however, unlike perturbation theory,
the Grushin reduction simultaneously yields assertion (ii), so that we limit ourselves to apply
perturbation theory to sketch a proof of remark 3 after theorem 1.1.

Let {e1, e1} be once more a basis in Eλ0 such that (1.2) holds, and denote by e∗
1, e

∗
2 the

dual basis in the dual subspace E∗
λ0

= JEλ0 . Clearly Jej = τj e
∗
j , τj = ±1. We denote �0

the spectral projection from H to Eλ0 . Explicitly,

�0u = (u|e∗
1)e1 + (u|e∗

2)e2. (2.1)

Consider now the rank 2 operator family �0Hε�0 acting on Eλ0 . The representing 2 × 2
matrix is

H(ε)j,k = λ0I + εH 1
j,k, H 1

j,k = (H1ek|e∗
j ), j, k = 1, 2. (2.2)

Now JH0 = H ∗
0 J, J�0 = �∗

0J . We also have JH1 = H ∗
1 J . Therefore,

(JH1ek|ej ) = (H ∗
1 Jek|Jej ) = (J ek|H1ej ) = τj (H1ek|e∗

j ) = τj (ek|e∗
j ) = τjH

1
j,k

and in the same way

(JH1ek|ej ) = (H ∗
1 ek|ej ) = (J ek|H1ej ) = τk

(
e∗
k |H 1

j

) = τk(H1ej |e∗
k ) = τkH

1
k,j .

Summing up,

τjH
1
j,k = τkH

1
k,j .

Therefore, if τ1τ2 = 1 the matrix H(ε)j,k is Hermitian for ε ∈ R and its eigenvalues are real;
if instead τ1τ2 = −1 the matrix H(ε)j,k has real diagonal elements and is anti-Hermitian off
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diagonal for ε ∈ R; hence its eigenvalues are complex conjugate under condition (1.4). This
completes the first step.

We want now to construct an approximate inverse of Hε − z near λ0 by solving a Grushin
problem. In this context it is equivalent to the Feshbach reduction, and provides a convenient
formalism for it. To this end, define the operators R+, R−,P0(z) in the following way:

R+ : H → C
2, R+u(j) = (u|e∗

j ), j = 0, 1; (2.3)

R− : C
2 → H, R−u− =

2∑
j=1

u−(j)ej , (2.4)

P0(z) =
(

H0 − z R−
R+ 0

)
: D × C

2 → H × C
2. (2.5)

Note that we have identified Eλ0 with its representative C
2, and that R+R− = Id . The

associated Grushin system is{
(H0 − z)u + R−u− = f

R+u = f+
(2.6)

where u ∈ D, f ∈ H, u−, f+ ∈ C
2. z ∈ C belongs to a neighbourhood of λ0 at a positive

distance from σ(H0)\{λ0}. After determining u− in such a way that f − R−u− ∈ (1 − �0)H
the first equation can be solved for u(z) ∈ (1 − �0)H and hence the problem is reduced to
the rank 2 equation R+u(z) = f+. To solve explicitly, remark that, for every z in the complex
complement of σ(H0)\{λ0},P0(z) has the bounded inverse,

E0(z) =
(

E0(z) E0
+(z)

E0
−(z) E0

−+(z)

)
, (2.7)

with

E0(z) = (H0 − z)−1(1 − �0), E0
+(z) = R−,

E0
−(z) = R+, E0

−+(z) = −zI +

(
λ0 0
0 λ0

)
,

(2.8)

where I is the 2 × 2 identity matrix. The spectral problem within Eλ0 is thus reduced to the
inversion of E0

−+(z), and obviously its solution is represented by λ0, e1, e2.
Now restrict the attention to the set of complex z with dist(z, {λ0}) < 1/(2R), where

R := ‖E0(λ0)‖ = ‖(1 − �0)(H0 − λ0)
−1‖ (2.9)

so that by the geometrical series expansion

‖E0(z)‖ � R

1 − |z − λ0|R . (2.10)

Consider the operator from D × C
2 to H × C

2 defined as

Pε(z) =
(

Hε − z R−
R+ 0

)
, (2.11)

associated with the Grushin system{
(Hε − z)u1 + R−u2 = f1

R+u1 = f2
. (2.12)

Then

Pε(z)E0(z) = 1 +

(
εH1E

0(z) εH1E
0
+(z)

0 0

)
=: 1 + K. (2.13)
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It is routine to check that Pε(z) has the inverse

Eε(z) =
(

Eε(z) Eε
+(z)

Eε
−(z) Eε

−+(z)

)
, (2.14)

with

Eε(z) =
∞∑

n=0

(−ε)nE0(H1E
0)n, (2.15)

Eε
+(z) =

∞∑
n=0

(−ε)n(E0H1)
nE0

+, (2.16)

Eε
−(z) =

∞∑
n=0

(−ε)nE0
−(H1E

0)n, (2.17)

Eε
−+(z) = E0

−+ +
∞∑

n=1

(−ε)nE0
−(H1E

0)n−1H1E
0
+, (2.18)

where all the series will be proved to have a positive convergence radius (convergence means
here uniform, or, equivalently, in the norm operator sense).

We next derive the appropriate symmetries for the inverse operators. We have

JR−u− =
2∑

j=1

u−(j)J ej =
2∑

j=1

(τu−)(j)e∗
j , τ :=

(
τ1 0
0 τ2

)

R∗
+u− =

2∑
j=1

u−(j)e∗
j

where the second equation follows from

(u|R∗
+u−) =

2∑
j=1

u−(j)(u|e∗
j ), (R+u|u−) =

2∑
j=1

u−(j)(u|e∗
j ).

We thus conclude

JR−u− = R∗
+τu−, R∗

−J = τR+.

Therefore, from JHε = H ∗
ε J we get(

J 0
0 τ

)(
Hε − z R−

R+ 0

)
=

(
J (Hε − z) JR−

τR+ 0

)

=
(

(H ∗
ε − z)J R∗

+τ

R∗
−J 0

)
=

(
(H ∗

ε − z) R∗
+

R∗
− 0

)(
J 0
0 τ

)

whence (
J 0
0 τ

)
Pε(z) = Pε(z)

∗
(

J 0
0 τ

)
. (2.19)

Since E(z) = P(z)−1, taking right and left inverses we get

E(z)∗
(

J 0
0 τ

)
=

(
J 0
0 τ

)
E(z)

that is (
E(z)∗ E−(z)∗

E+(z)
∗ E−+(z)

∗

) (
J 0
0 τ

)
=

(
J 0
0 τ

)(
E(z) E+(z)

E−(z) E−+(z)

)
. (2.20)
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In particular,

E−+(z)
∗τ = τE−+(z).

We can thus conclude that, for z ∈ R, if τ1 · τ2 = 1 the 2 × 2 matrix E−+(z) is Hermitian and
anti-Hermitian off diagonal with real diagonal elements if τ1 · τ2 = −1.

It remains to prove the norm convergence of the expansions (2.15), (2.17), (2.18). We
have, by the relative boundedness condition ‖H1ψ‖ � b‖H0ψ‖ + b‖ψ‖ and (2.10),

‖H 1E0‖ = ‖H 1(H0 − z)−1(1 − �0)‖
� b‖H0(H0 − z)−1(1 − �0)‖ + a‖(H0 − z)−1(1 − �0)‖
� b‖(H0 − z)(H0 − z)−1(1 − �0)‖

+ b|z|‖(H0 − z)−1(1 − �0)‖ + a‖(H0 − z)−1(1 − �0)‖
� b‖1 − �0‖ +

(b|z| + a)R

1 − |z − λ0|R < K

for some K(z) > 0 because |z − λ0| < 1/(2R). Therefore,

‖E0(H 1E0)n‖ � CKn+1, ‖(E0H 1)nE0
+‖ � CKn+1,

‖E0
−(H 1E0)n‖ � CKn+1, ‖E0

−(H 1E0)n−1H1E
0
+‖ � CKn+1.

Hence, the expansions (2.15), (2.17), (2.18) are norm convergent.
To conclude the proof we have to verify that the first-order truncation of the expansion for

E+(z) yields non-real eigenvalues, and that the higher order terms can be neglected. To this
end, first remark that without loss of generality we may assume λ0 = 0. Then the expansion
(2.18) yields (we drop the upper index in H 1

jk to simplify the notation)

Eε
−+(z) =

(
εH11 − z εH12

−εH 12 εH22 − z

)
+ O(ε2)

uniformly with respect to z, |z| < 1/2R. Therefore,

det Eε
−+(z) = z2 − (H11 + H22)εz + (|H12|2 + H11H22)ε

2 + O(ε3 + ε2|z|)
= [z − ε(H11 + H22)/2]2 + ε2[|H12|2 − (H11 − H22)

2/4] + O(ε3 + ε2|z|).
Now det Eε

−+(z), which is real for z ∈ R, clearly has no zeros for z ∈ C, ε � |z| � 1. On the
other hand, for z = O(ε), i.e., z = εw,w = O(1),

det Eε
−+(z) = ε2{[w − (H11 + H22)/2]2 + |H12|2 − (H11 − H22)

2/4} + O(ε3(1 + O(1)).

Therefore, if 4|H12|2 > (H11 − H22)
2 there cannot be real zeros for ε suitably small. We can

thus conclude that det Eε
−+(z) is zero for z = 	±(ε),

	±(ε) = ε

2

[
H11 + H22 ± i

√
4|H12|2 − (H11 − H22)2

]
+ O(ε2)

and this concludes the proof of the theorem. �

Sketch of the proof of remark 3. Here, Eλ0 is replaced by the two-dimensional subspace
E spanned by the eigenvectors ψ1, ψ2. Then the first step of the argument can be taken over
directly, up to the obvious notational changes, namely, standard first-order perturbation theory
entails that up to order ε2 the eigenvalues of Hε around the eigenvalues E1, E2 of H0 are given
by the eigenvalues of the 2 × 2 matrix

H 1
l,k =

(
E1 εH12

εH21 E2

)
, H12 = (ψ1|H1ψ2), H21 = (ψ2|H1ψ1)
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where without loss we have assumed (ψ1|H1ψ1) = (ψ2|H1ψ2) = 0. Therefore, H 1
l,k will have

non-real eigenvalues if |εH12| > |E2 − E1|/2 = d/2. This entails that the two eigenvalues of
Hε near E1, E2 will be likewise non-real as long as the second-order remainder of perturbation
theory can be made sufficiently small for ε fixed. By standard arguments (see, e.g., [16],
chapters II.5 and VII.2) it is enough to control ‖εH1R0(z)‖ uniformly in z ∈ �, where � is
any circumference encircling E1, E2. Choosing as usual � := {z ∈ C : |z − E1| = D/2}
where we have assumed without loss E1 closest to the complement of σ(H0) with respect to
{E1, E2}, the following estimate clearly holds:

‖εH1R0(z)‖ � |ε|‖H1‖
dist(z, σ (H0)

= |ε|‖H1‖
D/2 − d

.

Since |εH12| < |ε|‖H1‖, and the remainder is uniformly small for ‖εH1R0(z)‖ < 1, we see
that the following conditions must hold:

d

2
< |ε|‖H1‖ <

D

2
− d.

Given ‖H1‖, if d/D is small enough there exists ε∗ > 0 such that this condition holds for all
ε ∈ [−ε∗, ε∗].

Proof of theorem 1.2. Let us first recall that under the present assumptions Hε is a type-A
holomorphic family of operators in the sense of Kato (see [16], chapter VII.2) with compact
resolvents ∀ε ∈ C. Hence, σ(Hε) = {λl(ε)} : l = 0, 1, . . . . In particular,

(i) the eigenvalues λl(ε) are locally holomorphic functions of ε with at most algebraic
singularities;

(ii) the eigenvalues λl(ε) are stable, namely given any eigenvalue λ(ε0) of Hε0 there is exactly
one eigenvalue λ(ε) of Hε such that limε→ε0 λ(ε) = λ(ε0);

(iii) the Rayleigh–Schrödinger perturbation expansion for the eigenprojections and the
eigenvalues near any eigenvalue λl of H0 has convergence radius δl/‖H1‖ where δl is
half the isolation distance of λl .

Remark that since δl � δ,∀l, all the series will be convergent for all ε ∈ �r0 ; �r0 := {ε ∈ C :
|ε| � r0 < r}, where r := δ/‖H1‖ is a uniform lower bound for all convergence radii.

Assume now without loss of generality, to simplify the notation, ‖H1‖ = 1. By hypothesis
|λl − λl+1| � 2δ > 0 ∀l ∈ N. First remark that if ε ∈ R, |ε| < r0 and λ(ε) is an eigenvalue of
Hε then |Im λ(ε)| < δ, i.e., σ(Hε) ∩ Cδ = ∅, Cδ := {z ∈ C||Im z| � δ}. Set indeed

R0(z) := [H0 − z]−1, z /∈ σ(H0).

Then ∀z ∈ C such that |Im z| � δ we have

‖εH1R0(z)‖ � |ε| · ‖H1‖ · ‖R0(z)‖ � |ε|
dist[z, σ (H0)]

� |ε|
|Im z| . (2.21)

Hence, the resolvent

Rε(z) := [Hε − z]−1 = R0(z)[1 + εH1R0(z)]
−1

exists and is bounded if |Im z| � δ because (2.21) entails the uniform norm convergence of
the Neumann expansion for the resolvent:

‖Rε(z)‖ = ‖[Hε − z]−1‖ = ‖R0(z)

∞∑
k=0

[−εH1R0(z)]
k‖

� ‖R0(z)‖
∞∑

k=0

|εk|‖H1R0(z)]‖k � |ε|
|Im z| − ε

.



Spectra of PT -symmetric operators and perturbation theory 193

Now ∀l ∈ N let Qi(δ) denote the open square of side 2δ centred at λl . Since |λl − λl+1| � 2δ,
it follows as in (2.21) that Rε(z) exists and is bounded for z ∈ ∂Ql(δ), the boundary of Ql(δ).
We can, therefore, according to the standard procedure (see e.g., [16], chapter III.2) define the
strong Riemann integrals

Pl(ε) = 1

2π i

∫
∂Ql(δ)

Rε(z) dz, l = 1, 2, . . . .

As is well known, Pl is the spectral projection onto the part of σ(Hε) inside Ql . Since Hε is a
holomorphic family in ε, by well-known results (see, e.g., [16], theorem VII.2.1), the same is
true for Pl(ε) for all l ∈ N. In particular, this entails the continuity of Pl(ε) for |ε| < r0. Now
Pl(0) is a one dimensional: hence the same is true for Pl(ε). As a consequence, there is one
and only one point of σ(Hε) inside any Ql . Now σ(Hε) is discrete, and thus any such point
is an eigenvalue; moreover, any such point is real for ε real because σ(Hε) is symmetric with
respect to the real axis. Finally, we note that if z ∈ R, z /∈ ⋃∞

l=1]λl − δ, λl + δ[ the Neumann
series (2.21) is convergent and the resolvent Rε(z) is continuous. This concludes the proof of
theorem 1.2. �
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